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The motivation for this work lies in something from physics called
a ‘phase’

What are phases?
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Phases (sketch)

In physics, a phase is a region of state space with distinct
qualitative behaviour

Usually determined via symmetry: the disordered phase has a
global symmetry under a representation of some Lie group
(transformations are ‘idempotent’ in the face of disorder), whilst
the ordered phase breaks this symmetry (transformations destroy
order)
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Phases (motivation: Ising model)

Consider a family of random variables {Xi}i∈[1:N2] valued in
{−1, 1}, and a joint random variable X = |X1X2X3 . . .XN2⟩

Suppose X satisfies a stochastic differential equation with a
parameter T

Moreover, suppose T controls the variance of the joint probability
measure. In particular, for 0 ≤ T < 1, P(x) concentrates around
the ground state |(−1)(−1)(−1) . . . (−1)⟩

In physics this is called an Ising model. Here Xi is a spin state, X
is a field configuration, and T is temperature
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Phases (motivation: Ising model)

Arrange X on a two-dimensional lattice with N vertices in each
direction

The probability measure for X is given by

P(X = x) ∝ e−
1
T
E(x)

where E (x) = −
∑

ij xixj

Notice that the quantity E (x) is invariant under a Z2 action

However, the state x itself is not. Example:
|(−1)(−1)(−1) . . . (−1)⟩ 7→ |111 . . . 1⟩ (ground state degeneracy)
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Phases (motivation: Ising model)

Let m be the ensemble average of X , i.e., the average of X with
respect to i (order parameter, slow mode).

Under a global rotation of the ground state, m goes from −1 to 1

So the physics changes, even though the energy level doesn’t

Ground state degeneracy = ‘spontaneously broken symmetry’

There exists an ordered phase (m = −1 or m = 1) and a
disordered phase (m ∈ (−1, 1))
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Generalised phases

Not all systems have macroscopic properties based on SSB or
order-disorder transitions

Examples: set-points in control systems, turbulence in fluid flows,
patterns in reaction-diffusion systems, hurricane formation in the
atmosphere... and so forth

However, these are still systems with distinct behaviours dependent
on some parameter

How can we generalise the idea of a phase to cover the physics of
control and pattern formation?

AMS Fall Western Sectional 2022
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Generalised phases

Notice that

(i) the low-T regime of the Ising model is a point attractor

(ii) when T is large, the probability of the system being in the
ground state is low

∴ The quantity T controls the behaviour of the system near an
attractor

This suggests the Ising model is well-approximated by fluctuations
in a lower dimensional, parametric system

AMS Fall Western Sectional 2022
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Generalised phases

How do we carve up the state space into distinct regions whose
occupation probability depends on some parameter? Under what
conditions do those regions correspond to patterns?

We want the following:

(i) When 0 ≤ T < 1, m = −1 or m = 1, satisfying argminE (x)

(ii) When T > 1, m fluctuates with probability P(m), where
P(m = −1) is small

AMS Fall Western Sectional 2022
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SPDEs

Ansatz : X can be described by the SPDE

∂T x(T ) = −∂xE (x) +
√
T ξ

Fix a ground state. Taking fluctuations
√
T ξ as (x −m), we have

(i) a system which fluctuates away from an attractor with
magnitude proportional to T

(ii) a stochastic Allen-Cahn equation (a ‘model A system’)

(iii) Glauber-like dynamics for the Ising model (Hohenberg and Halperin

1977, Rev Mod Phys)
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Main results

Our main result is that dynamics near a normally hyperbolic slow
manifold lie in the model A universality class, describing phased
materials with well-defined effective descriptions

In this way it is possible to define a notion of a phase that has
nothing to do with a system’s symmetries

This canonical form is a simple stochastic (partial) differential
equation derived partially from a large deviations principle for
fluctuations near a slow manifold

Why is this interesting? Extends the theory of ‘patterns’ to very
general dynamics (conjecture total speculation to follow)
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Main results

Suppose a slow manifold (x , h(x)) exists, such that
∂tu = f (x , h(x)) for small u.

Let f (x , h(x)) satisfy the Euler-Lagrange equation for some
quantity F

Suppose also that fluctuations in u are fast (i.e., u − (x , h) has
timescale ε−1t)

Incorporate a correction term to ∂tu which keeps track of
fluctuations off of (x , h(x))

AMS Fall Western Sectional 2022
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Main results

The following expansion of the flow near the slow manifold holds
for arbitrary large u and ν > 0:

∂tu = f (x , h(x)) + (u − (x , h(x))))

Adiabatic theorem =⇒ fast variables behave like noise

We obtain ∂tu(t) = f (x(t), h(x(t)) + νξ

When ν is large, two things happen: (i) high-noise phase (ii)
instability about slow manifold

AMS Fall Western Sectional 2022
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Main results

Let cν be a divergent ν-dependent constant (i.e., for which
cν → ∞ when ν → 0)

The flow obeys a large deviations principle with rate function F
where f = δF/δu

Instanton solution is slow manifold

In L2, stationary measure (if it exists) is

p(u) ∝ exp{−cνF (u)}.

Example:

p(u) ∝ exp

{
− 1

T
E (u)

}
in Ising model

AMS Fall Western Sectional 2022
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Main results

Since h(x) minimises F , a more general expression is obtainable:

∂tu(t) = cν∇F (u(t)) + νξ

= −∇ log p(u(t)) + νξ

=⇒ if we don’t know F , we can just infer p(u(t))
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Total speculation

Patterns in fluid flow are sometimes described using
space-dependent attractor-repellor configurations called Lagrangian
coherent structures (see e.g. Lekien, Shadden, Marsden, 2007, J Math Phys;

Haller 2015, Ann Rev Fluid Mech)

Is there a straightforward generalisation of this result that provides
a description of dynamics with low-dimensional space-dependent
patterns?
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Total speculation

Suppose we have an A-model for h(x) coupled to the fluctuations
near a disjoint slow manifold k(x)

This describes an LCS where the flow off of one slow manifold
enters the neighbourhood of another

This introduces interaction terms, which are usually challenging

For simple equations, one may be more optimistic... however, in
the general case, not much hope a priori of doing this rigorously

AMS Fall Western Sectional 2022
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Dimension reduction; Bayesian inference of order parameters

Because slow manifolds are difficult to describe analytically, a
question naturally arises: is there an alternative road to producing
slow manifolds?

We are now asking about the inference of low-dimensional
descriptions of a system (i.e., of an order parameter)

So is there an algorithm that carves a dynamical system into slow
and fast subsystems?

AMS Fall Western Sectional 2022
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Dimension reduction; Bayesian inference of order parameters

One approach to this lies in the study of structure vs function in
neural networks

Dynamic causal modelling infers the coupling constants between
different subsystems of a random dynamical system for purposes of
causal inference (Friston, Li, Daunizeau, Stephan, 2011, NeuroImage)

Weak or sparse coupling approximation leads to the spontaneous
identification of order parameters in a network of oscillators

AMS Fall Western Sectional 2022
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DCM / LCS

Known to carve up signals from networks of neural cells into slow
dynamics and fluctuations / stable and unstable phases. Example:
epilepsy (Jafarian et al, 2021, NeuroImage)

Likely a useful tool in understanding systems like LCSs numerically
AMS Fall Western Sectional 2022
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Concluding remarks

▶ We can understand phases as low-dimensional descriptions of
a system (patterns) in distinct areas of phase space

▶ We can understand a system spreading out in its state space
(instability) as a disordered, high-noise phase

▶ Generalisations to more complex systems may exist

▶ Tools already designed for problems in this universality class
exist, and will likely be useful in numerical analysis of such
systems

I acknowledge funding support from the VERSES Research Lab
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