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We will construct a model of a self-organising system sub-
ject to dissipative fluxes wherein the system performs vari-
ational inference on the dynamics of its environment. At
a basic level this will be a purely mathematical statement
that the statistics of an environment can be ‘read off’ by a
system situated inside it [1, 2], analogous to the celebrated
framework of Jaynes at equilibrium [3]. For more sophisti-
cated systems this can be thought of as a principle by which
systems maintain non-equilibrium steady states [4], recapit-
ulating such works as [5, 6, 7, 8, 9, 10, 11]. The author is
grateful to K Dill and K Friston for many discussions around
this topic.

A non-equilibrium system can be said to perform infer-
ence in the following sense. If a system exists at a state out
of equilibrium it must reflect some meaningful properties of
its environment relating to (for instance) the reservoirs of
free energy and fluxes of heat in and out of the system. If a
system stays close to an out of equilibrium state for long pe-
riods of time, it must be a better source of information about
its environment; dually, one may argue that self-organising
systems must store good models of their environment to bet-
ter know what energy resources to take advantage of. In-
deed, the main thesis of our framework is that any interact-
ing systems capture the statistics of each others’ probabil-
ity densities via that interaction, and that estimating another
system’s statistics can be written as (variational) Bayesian
inference.

Consider a large number of interacting particles (the sys-
tem, a family of random variables {Xt}t:τ ) coupled to a heat
bath of constant temperature β−1. Following [8, 9, 12] we
will postulate the existence of a time-dependent field λ(t)
performing work on the system. Given a choice of λ(t), the
Itō process

dXt = b(Xt, λt) dt+ εσ(Xt) dWt

generates trajectories γ with log-probability

log p(γ†)− β∆Q(γ)

where γ† is the time-reversed path. Our framework rests on
an application of a theorem of Freidlin–Wentzell

log p(γ ∈ δ) = −
∫ τ

0

σ−1|γ̇t − b(γt, λt)|2 dt

to leading order in ε, and consequently, that the expected
path minimises log p(γ). (Note that this result can be ex-
tended to stochastic partial differential equations with some

subtleties, covering active matter situations.) Consequently

log p(γ†)− β∆Q(γ)

=−
∫ τ

0

σ−1|γ̇t − b(γt, λt)|2 dt+ o(ε). (1)

Observe the system has as a parameter the choice of λ(t).
We can imagine this as a control parameter or simply an
abstract representation of the driving field. Following the
argument in [2], this implies that for a system coupled to
an environment in a particular way, the expected trajectory
minimises the divergence between a parametric distribution
over external states and a true density over external states.

If we imagine a system which modulates λ such that it
evolves in a highly irreversible way, (1) yields an explicit
estimate for how much heat must be dissipated in order to
minimise fluctuations away from some desired time evolu-
tion. Relating this to a variational free energy function of
probabilities over the environment gives us the notion that a
system must be a ‘good’ representation of its environment
as long as it consumes sufficiently large energetic resources
to dissipate that amount of heat, modulating λ(t) to weight
outcome-likelihood ratios favourably. In the following lec-
ture an explicit model of a non-equilibrium system satisfy-
ing this variational free energy principle will be given.
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