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Remarks

These slides can be found later at darsakthi.github.io/talks

Some useful references will be noted on the final slide

https://darsakthi.github.io/talks.html
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We begin from a system of two coupled random variables evolving
in time separated by a boundary,

Xt
g−→ Bt

h−→ Yt

assumed to satisfy Itō SDEs

dXt = f1(Xt ,Bt , t) dt + D1(Xt ,Bt , t) dW
1
t

dBt = f2(Xt ,Bt ,Yt , t) dt + D2(Xt ,Bt ,Yt , t) dW
2
t

dYt = f3(Bt ,Yt , t) dt + D3(Bt ,Yt , t) dW
3
t

The precise coupling structure is specific to a given system and
defines different classes of dynamics [Friston et al, 2023].
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Suppose f1 is not the gradient of a smooth function and Xt has a
pullback attractor in the state space

Then under certain regularity assumptions there exists a
non-equilibrium steady state density p∗(x)

In which case we have the normal form

dXt = −(Q − Γ)∇x log p
∗(Xt) dt + D dWt

with Q⊤ = −Q, Γ ⩾ 0, and 2Γ = DD⊤.
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Now stipulate a variational posterior q(y ; x) and write

F (b, x) :=

∫
q(y ; x) log q(y ; x) dy −

∫
q(y ; x) log p(y , b, x) dy

Recall that p(y , b, x) = p(y | b, x)p(b, x) and log ab = log a+ log b

Applying this and conditional independence we have

F (b, x) = E
q(y ;x)

[log q(y ; x)]− E
q(y ;x)

[log p(y | b)]− log p(b, x)

. . . so that
F (b, x) ⩾ − log p(b, x).
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Suppose there exists an x such that q(y ; x) equals p(y | b) almost
surely. Denote that x as x∗

Then E[log q(y ; x∗)] = E[log p(y | b)] and our SDE becomes

dXt = −(Q − Γ)∇xF (b, x
∗) dt + D dWt

The difference of expectations is the KL divergence between a
variational posterior and target distribution; the free energy is a
tractable upper bound on model evidence

Implication:

All Markov-blanketted non-equilibrium processes on an attractor in
their state space can be written as if implementing Bayesian infer-
ence over the likely causes of sensations
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Interpretation:

If a system mainly does what one (a modeller) expects it to do, it
can only be so surprising

For instance

▶ Observable stones must be concentrated on stone-like states

▶ Observable control systems must be concentrated on set
points
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So far all we have said is that, via the interactions across a shared
boundary, coupled random dynamical systems estimate each others
statistics

Ultimately: any ‘thing’ encodes a probability distribution over
possible environmental states. . . because the environment must be
conducive to it existing

Question: why bother?

Answer: complex systems are difficult to understand because of
their interactions, so replacing couplings with the study of
variational free energy is fruitful
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Let us now imagine being modellers in the system’s
environment. . . and undertaking the task of trying to infer the
probabilities of different states the observed system can occupy.
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Viewing ‘finding x∗’ as a constrained variation of entropy, one can
write

argmax
p

∫
p(x | b) log p(x | b) dx−λ

(
E
[∥∥x−u−1(ŷb)

∥∥2
L2

∣∣ b]−S−1
⋆

)
for p∗(x | b).

The solution is

p∗(x | b) = e−λ
(
x−u−1(ŷb)

)⊤
S−1
⋆

(
x−u−1(ŷb)

)
In words: the optimal distribution is such that the conditional
expectation maps (by u) to the conditional expectation of the
environment given the blanket state, and the conditional variance
maps (by ⋆) to the inverse precision over the environment

This recovers the Laplace approximation of p(x | b)
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∥∥2
L2

∣∣ b]−S−1
⋆

)
for p∗(x | b).

The solution is

p∗(x | b) = e−λ
(
x−u−1(ŷb)
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This tells a somehow dual story: given our knowledge of the
environment and the coupling, assuming the free energy principle,
we can infer the steady state density over system states by
maximising entropy

Or more actively: the system maintains a regime of states by
constraining itself, and these constraints are equivalent to certain
environmental compatibility conditions

However . . . a small caveat exists.

Maximum entropy is only näıvely applicable at equilibrium!
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In general an enduring question is: what about time-varying
systems?

In fact the original formulation of the free energy principle
concerns generalised filtering performed by the expected evolution
of a random dynamical system

We will investigate this formulation and extend the previous
comparison theorem
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Let us pass to ‘generalised coordinates of motion’ now

i.e., a tuple x̃ = [x , x ′, x ′′, . . .] containing instantaneous derivatives
of the solution to a (stochastic) ordinary differential equation

Denote x̃t as a generalised state at time t

Our SDE can be written as

dX̃t = Df (X̃t) + D dW̃t

(e.g. simultaneous random evolutions of all derivatives)

Generalised coordinates admit a mapping to solutions of the
original SDE by reconstructing any path from its derivatives*



Preliminaries Synchrony The comparison theorem The same story along trajectories References

Let us pass to ‘generalised coordinates of motion’ now

i.e., a tuple x̃ = [x , x ′, x ′′, . . .] containing instantaneous derivatives
of the solution to a (stochastic) ordinary differential equation

Denote x̃t as a generalised state at time t

Our SDE can be written as

dX̃t = Df (X̃t) + D dW̃t

(e.g. simultaneous random evolutions of all derivatives)

Generalised coordinates admit a mapping to solutions of the
original SDE by reconstructing any path from its derivatives*



Preliminaries Synchrony The comparison theorem The same story along trajectories References

Let us pass to ‘generalised coordinates of motion’ now

i.e., a tuple x̃ = [x , x ′, x ′′, . . .] containing instantaneous derivatives
of the solution to a (stochastic) ordinary differential equation

Denote x̃t as a generalised state at time t

Our SDE can be written as

dX̃t = Df (X̃t) + D dW̃t

(e.g. simultaneous random evolutions of all derivatives)

Generalised coordinates admit a mapping to solutions of the
original SDE by reconstructing any path from its derivatives*



Preliminaries Synchrony The comparison theorem The same story along trajectories References

Let us pass to ‘generalised coordinates of motion’ now

i.e., a tuple x̃ = [x , x ′, x ′′, . . .] containing instantaneous derivatives
of the solution to a (stochastic) ordinary differential equation

Denote x̃t as a generalised state at time t

Our SDE can be written as

dX̃t = Df (X̃t) + D dW̃t

(e.g. simultaneous random evolutions of all derivatives)

Generalised coordinates admit a mapping to solutions of the
original SDE by reconstructing any path from its derivatives*



Preliminaries Synchrony The comparison theorem The same story along trajectories References

Let us pass to ‘generalised coordinates of motion’ now

i.e., a tuple x̃ = [x , x ′, x ′′, . . .] containing instantaneous derivatives
of the solution to a (stochastic) ordinary differential equation

Denote x̃t as a generalised state at time t

Our SDE can be written as

dX̃t = Df (X̃t) + D dW̃t

(e.g. simultaneous random evolutions of all derivatives)

Generalised coordinates admit a mapping to solutions of the
original SDE by reconstructing any path from its derivatives*



Preliminaries Synchrony The comparison theorem The same story along trajectories References

Separately, general theory tells us the following:

− log p(Xτ ) =

∫ τ

0

∥∥∂tXt − f (Xt)
∥∥2 dt + o(D)

(Freidlin–Wentzell; Onsager–Machlup)

Denote γt as a path up until time t. Observation: our normal form
is intact . . . because this fact implies

dγt = −∇γ log p(γt) + D dWt



Preliminaries Synchrony The comparison theorem The same story along trajectories References



Preliminaries Synchrony The comparison theorem The same story along trajectories References

Separately, general theory tells us the following:

− log p(Xτ ) =

∫ τ

0

∥∥∂tXt − f (Xt)
∥∥2 dt + o(D)

(Freidlin–Wentzell; Onsager–Machlup)

Denote γt as a path up until time t. Observation: our normal form
is intact . . . because this fact implies

dγt = −∇γ log p(γt) + D dWt



Preliminaries Synchrony The comparison theorem The same story along trajectories References

Separately, general theory tells us the following:

− log p(Xτ ) =

∫ τ

0

∥∥∂tXt − f (Xt)
∥∥2 dt + o(D)

(Freidlin–Wentzell; Onsager–Machlup)

Denote γt as a path up until time t. Observation: our normal form
is intact . . . because this fact implies

dγt = −∇γ log p(γt) + D dWt



Preliminaries Synchrony The comparison theorem The same story along trajectories References

The idea of generalised filtering is: we want to infer the evolving
causes of evolving sensations

Given a model m and generalised sensor data s̃ one wants to
maximise the accumulated log-evidence

ε =

∫ τ

0
log p(s̃t | m)

It is almost never possible to tractably evaluate ε, so instead we
study the free action

F :=

∫ τ

0
E
q
[log q(ϑt)]− E

q
[log p(ϑt | s̃t ,m)]− log p(s̃t | m)dt .

Question: why is this satisfactory?
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study the free action
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∫ τ
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q
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Answer: this is satisfactory because∫ τ

0
E
q
[log q(ϑt)]− E

q
[log p(ϑt | s̃t ,m)] dt ⩾ 0

so that∫ τ

0
E
q
[log q(ϑt)]− E

q
[log p(ϑt | s̃t ,m)] dt −

∫ τ

0
log p(s̃t | m)dt

⩾ −
∫ τ

0
log p(s̃t | m)dt .

Conclusion: minimising free action maximises accumulated
log-evidence.
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Now suppose we have two coupled random processes with
non-stationary statistics

We will write the system as γ, the environment as ξ, and the
boundary as β

We know the evolution of each minimises its log-path-probability

Introducing the free action

F (βt , γt) =

∫ τ

0
DKL

(
q(ξt ; γt,β)∥ p(ξt | βt)

)
− log p(βt , γt) dt

it follows that for γ∗t we have

dγt = DF (βt , γ
∗
t ) + D dWt
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Maximising path entropy gives us the same picture as what we had
before

Namely: viewing ‘finding γ∗t ’ as a constrained variation of path
entropy, one can write

argmax
p

∫
p(γt) log p(γt) dγ−λ

(
E
[∥∥γt−u−1(ξ̂t,β)

∥∥2
L2

∣∣ β]−S−1
⋆

)
for p∗(γ | β).

The solution is

p∗(γ) = e−λ
(
γ−u−1(ξ̂β)

)⊤
S−1
⋆

(
γ−u−1(ξ̂β)

)
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In words: the optimal distribution is such that the expected
evolution tracks (by u) to the expected evolution of the
environment given the blanket state, and the conditional variance
maps (by ⋆) to the inverse precision over generalised states of the
environment

This recovers the Laplace approximation of p(γ)

This tells a somehow dual story: given our knowledge of the
system’s environment and the coupling, assuming the free energy
principle over paths, we can infer the likely evolutions of the
system by maximising path entropy

Or more actively: the system maintains a regime of evolutions by
constraining itself, and these constraints are equivalent to certain
environmental compatibility conditions
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Question: why bother?

Answer: contemporary theories of stochastic thermodynamics offer
arguments that the maintenance of non-equilibrium evolution is a
property of inference about an environment (see e.g. England’s
theory of dissipative adaptation). Generalised fluctuation relations
are then derived from

p(Xt) = e−
∫ τ
0

∥∥∂tXt−f (Xt)
∥∥2

dt+o(D)

In a cylindrical neighbourhood of the expected trajectory, p(Xt) is
equivalent to

p(Xt) = e−F (βt ,γt).

This means the free energy principle offers (i) an automatic and
pleasing account of why non-equilibrium systems do inference, and
(ii) a method to prove conceptual arguments that fluctuations
relations out of equilibrium are obtained through inference.
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I offer the following takeaway.

It becomes prudent to ask not what non-equilibrium statistical
mechanics can do for the free energy principle, but what the free
energy principle can do for non-equilibrium statistical mechanics
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