
SOME VOCABULARY AND MOTIVATION FOR ∞-CATEGORY

THEORY

DALTON A R SAKTHIVADIVEL

These are notes for the 2021-2022 algebraic topology reading group on ∞-category
theory. These notes provide a brief overview of important material in chapter one of
our reference text, Land’s Introduction to Infinity-Categories. Section 3 includes some
further remarks. The notation and presentation is (mostly) consistent with Land’s.
This is not a comprehensive discussion of these topics, and so I also recommend
Emily Riehl’s stellar set of notes “A Leisurely Introduction to Simplicial Sets,” and
the material found in Kerodon. I can further recommend Friedman’s survey on sim-
plicial sets [arXiv:0809.4221] and Groth’s survey on ∞-categories [arXiv:1007.2925].
Chapter 6 (6.1.2 in particular) of Lurie’s Higher Topos Theory , 2012 reprint, contains
more information on classifying spaces.
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1. Simplicial objects

Here are some brief remarks about simplicial sets, to motivate what we will discuss.
We have a host of similar, but not identical, objects, that will be distinguished in the
interest of formality. Loosely, these objects have different types, and are certainly
realised in different contexts—e.g., unrealised, realised in sets, realised in spaces, and
so forth. Throughout, points are zero-simplices, and so we (somewhat accidentally)
choose the convention that anytime an n is seen, it is typically in fact an n + 1 in
some sense. This is made explicit where needed.

A totally ordered set isomorphic to some sequence of natural numbers is an ordinal
number [n], also written n. The category ∆ is the abstract category of ordinal
numbers [n] = {0, . . . , n} for all n ∈ N. This is sometimes misleadingly called the
simplex category, but this should be avoided, as ∆ does not contain simplices. Every
[n] contains the ordinal [n− 1], which itself contains the ordinal [n− 2], and so forth.
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Effectively, each [n] contains n terminal ordinals [0] = 0, labelled by their index in
[n]. Any ordinal [m] can be mapped to [n] by inserting or skipping sufficiently many
indexed elements to form a new ordinal—in particular, adding n − m elements to
[m].1 In any case, the data encoded by ∆ is purely combinatorial, but has a useful
recursive character.

A priori, an n-simplex is a particular, isolated object with some shape. A zero-
simplex is a point, a one-simplex is an edge filling the space between points, a two-
simplex is a face filling the space between edges, and so forth. Clearly, an n-simplex
admits n types of sub-simplex, as yet unspecified. The way we capture this recur-
sion is as follows: given an initial set of interest, [n], the standard n-simplex ∆n is
Hom∆(−, [n]). This works by taking [n] and giving us all the maps between all the
subsets of and supersets containing [n]; this records every simplex for every i up to
n and every j greater than [n]. Indeed, any i-simplex in ∆n is a monomorphism
[i] 7→ [n], defining a sub-simplex at i.

Define a presheaf X : ∆op → Set as a simplicial set, also written X• to indicate
we take in all n. This functor maps [n], for every value of n, to the set of n-simplices
X[n], also written as Xn. By set of n-simplices, we mean there may be multiple
entities at some n, e.g., several points at n = 0, a large graph at n = 1, and so
forth. These points are assumed to be instantiated in some way prior to defining an
n-simplex on those points.2 A simplicial set is simply a contravariant functor C to
Set, so there is no need for any standardisation. This is quite a general object, or at
least, we have a lot of freedom in terms of how, precisely, it is ‘shaped’—it is simply a
functor, as far as we have defined it. As a presheaf, we can use the Yoneda embedding
to say that this functor is related somehow to Hom∆([m], [n]), collecting the set of all
maps between every pair [m] and [n] for different values of m and n. Since a simplex
is defined by exactly these maps, X gives us the set of simplices associated to any set
of vertices, and it appears like ∆n is the thing that assigns each X[n] its n-simplices
(and implicitly its sub-simplices). We can make this relationship precise, as follows
below.

Given a locally small category C, a presheaf that is naturally isomorphic to the con-
travariant functor Hom(−, A) for some A ∈ Obj(C) is called a representable presheaf.
Since we can define a simplicial set as a presheaf, the density theorem says that
any simplicial set ought to be the colimit of some representable presheaf, such that
every simplicial set has a factorisation related to a more ‘fundamental’ object. The

1The epimorphism σi mapping [n+1] 7→ [n] by degenerating a map to the i-th element of [n], and
the monomorphism δi mapping [n − 1] 7→ [n] by inserting an element at i, accomplish this. These
maps change under various realisations to match the context needed. In ∆, σi is given by a surjective
map with two arrows from i and i+1 in [m] = [n+1], the domain of σi, both onto i in the codomain
[n]. In other words, σi(i) = σi(i+ 1) = i. Likewise, δi(i) = i = i+ 1. The images of σi and δi under
X are si : Xn → Xn+1 (a degeneracy map) and di : Xn → Xn−1 (a face map), respectively. Note
these are dual to their originals.

2The standard topological n-simplex is ‘standard’ because there are n+1 points aligned with the
n+ 1 standard basis vectors of Rn+1—so in other words, the minimal set of points needed to define
an n-simplex, if each i-simplex for i ∈ [n] is stored in a space of dimension no greater nor less than
i. This will be apparent as soon as we discuss realisation.
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representable presheaf is thus the object satisfying the following isomorphism:

Nat(hn, X) ∼= X[n]

where hn = Hom(−, [n]) by the Yoneda embedding. That object is what we previously
defined as the standard n-simplex. In this way, any simplicial set can be related to
the more familiar notion of maps in ∆. From this, we apply the density theorem to
get

X ∼= colim
n∈∆/X

∆n.

2. Realisation and singularisation

In general, but especially in ∞-category theory, we conceptualise space and quant-
ity as being dual.3 This is modelled on the fact that we can identify simplicial sets as
volumes of spaces, and pass from one to the other. Here, we speak of realisation as
constructing an object out of a simplicial set, and singularisation as constructing a
simplicial set out of an object. These things are typically spaces, but in the particular
case of the nerve of a category, a category is singularised by a simplicial set. Duality
is encoded in the adjoint-ness of this pair of operations.

Using the preceding definition of ∆n, we can construct ∆n
top, or the standard topo-

logical n-simplex, as the convex hull of the set of points around the origin of Rn+1 such
that the vertices of the n-simplex are aligned with the standard basis e0, . . . , en. In
fact, the standard topological n-simplex is contained entirely in [0, 1]n. Suppose this
is the simplex on which we model simplicial complexes.4 Like the freedom we have in
simplicial sets as opposed to their standard representable objects, we have simplicial
complexes assembling into a whole space, defined more freely, but still built out of
standard (topological) n-simplices. The simpler case of defining ∆n

top corresponds to
a covariant functor ∆top : ∆ → Top, sending [n] to ∆n

top. In turn, this induces a more
general geometric realisation functor

| − | : sSet → Top,

inspired by declaring ∆n to be the convex hull of some points in some topological
space. In general, identifying a simplicial set as the volume of some space, and
passing to that space, is the realisation of that set (as a geometric space). Geometric
realisation takes a simplicial set X, and fashions a topological space |X| using each
element in Xn—all the n-simplices in X between every relevant vertex—as being
identical to a copy of ∆n

top, just like how a simplicial set is built. These are glued
together to make a larger topological space, using the information encoded in the

3Spaces are generalised by objects on which we model quantities, and by quantity, we mean some
algebraic structure with values in the collection of objects of interest. This terminology is inspired
by the evaluation of a homomorphism on a space, giving a particular space as its image, which is
the quantity returned by the map. There is a philosophical sense in which this underlies the ethos of
algebraic topology, in that it is the study of algebraic qualities (such as invariants) defining a space.

4A word of warning: in much of the literature a ‘simplicial complex’ is a particular simplicial set
that singularises a space, and the space that carries it, into which it is realised, is called a polyhedron.
We do not employ that convention, instead referring to simplicial complexes in the same sense as
CW complexes—already a space.
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face and degeneracy maps of X regarding what shares a sub-simplex with what. This
equivalence relation defines the relevant quotient space. Indeed, we have

|X| = colim
∆n∈∆/X

∆n
top,

or identically, the coproduct of Xn ×∆n
top modulo the equivalence relation of shared

sub-simplices, measured by the content of the images of the face and degeneracy
maps. To return to complexes, we have the following interesting fact: the realisation
of a simplicial set is a CW complex. Also, the realisation of ∆n is ∆n

top, in that the

object corresponding to an n-simplex is an n-dimensional object in Rn+1.
We could, in theory, go about this adjointly—define a functor such that, rather than

realising a simplicial set as a space by building its faces and edges into a topological
space, we probe an existing space with a simplicial set, built by a set of continuous
functions α : ∆n

top → Y defining a set of topological n-simplices in Y . A single
such map is the singular n-simplex of Y . In analogy to the above, this identifies the
volume of some space with a simplex—for some simplicial set, we view a volume of
the space Y as an instance of X. This in turn is called the singular simplicial complex
(or singular simplex for brevity) of Y , Sing(Y ). It should be clear that the singular
simplex of a space sends that space to a simplicial set, such that we induce another
functor

Sing : Top → sSet,

called singularisation. This functor can be constructed as

Sing(Y ) : Y 7→ HomTop(∆
•
top, Y ),

such that we build a simplicial set out of the data in the space, taking all the
maps describing every n-simplex in the space that the singular simplex could con-
tain. Technically, we represent ordinals [n] by the set of topological n-simplices in Y ,
HomTop(∆

n
top, Y ), like we did with simplicial sets as presheaves. Then, going from

Y to HomTop(∆
n
top, Y ) induces the intended functor for Sing(Y )[n]. This is induced

by the Yoneda lemma in the same way as mapping Set to sSet by way of ∆: given
that ∆•

top is cosimplicial (true by definition), the map [n] 7→ HomTop(∆
n
top, Y ) de-

termines a functor from ∆op to Set, such that the result Sing
∆top
n (Y ) is in bijection

with HomTop(∆
n
top, Y ). Neglecting to write the informational but perhaps not useful

superscript ∆top, we recover the simplicial set Sing(Y ) sending Top to sSet.

2.1. Adjointness. A special note is devoted to the adjointness of these functors.
The functors | − | and Sing(−) are an adjoint pair, since for any space Y which is
singularised by some simplicial set X•, we can say Y is exhibited as a realisation
of X•. Take the previous example: the realisation of a {0, 1, 2}-simplex is a {point,
edge, face}, whilst {points, edges, faces} are singularised by {0, 1, 2}-simplices. In
that case, singularisation makes an n-simplex out of the vertices, edges, faces, etc,
found in the convex hull of Rn+1, such that ∆n

top is exhibited as the realisation of ∆n.
The exact mechanics of this example can be found in Example 1.1.8.2 of Kerodon.
In general, the vertices of Sing•(Y ) can be identified as the points in Y , and the
edges as paths p : ∆1 → Y , where the one-simplex takes the place of an interval.
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Two-simplices are given by homotopy equivalent composition of paths, making a sort
of surface given by ∆2 → Y .

Formally, singularisation is right-adjoint to realisation. Take the definition of
Sing(Y ) as HomTop(∆

n
top, Y ). The claim is that

HomTop(∆
n
top, Y ) ∼= HomsSet(∆

n,Sing(Y )).

This seems to follow by definition, and indeed, the composition of maps behaves as one
expects it to (see Friedman, Theorem 4.10, for some details). By the density theorem,
we can generalise the proof to any |X| (X, respectively), so the more interesting

HomTop(|X|, Y ) ∼= HomsSet(X,Sing(Y ))

also holds. This statement is arguably even clearer.
A more interesting proof is given by Riehl in “A Leisurely Introduction to Simplicial

Sets.” Let R : E → sSet be a functor sending e ∈ E to a simplicial set by the Yoneda
embedding

Rn(e) = HomE(F [n], e).

For any cosimplicial object F : ∆ → E , the left Kan extension of F along the Yoneda
embedding yields a functor L : sSet → E , for whom the the right adjoint is R. This
Kan extension formalises the ‘it follows by definition’ argument above, and the proof
itself is far more general than just topological spaces. This generality is useful, as we
will see we are not exclusively interested in E = Top.

3. Nerves, model structures, and Kan complexes

The nerve of a category is the simplicial set that singularises that category. Take a
locally small category C. Much like the functor ∆top : ∆ → Top we modelled on the
topological n-simplex, we have a cosimplicial object ∆cat : ∆ → Cat, sending ordinals
onto the data of C. We haveNerv(C)[0] as the objects in C, Nerv(C)[1] as morphisms,
Nerv(C)[2] as strings of two composable morphisms (commuting triangles), and so
forth for strings (shapes) of length (dimension) n. Since this forms a simplex out of
the data in C, there is a particular singularisation sending Cat to sSet, given by

C 7→ HomCat(∆
•
cat, C)

with
Nerv(C)[n] = HomCat(∆cat[n], C),

giving the intended presheaf Nerv(C) : ∆op → Set. At this point, this construction
is quite familiar, as it really is nothing but a simplicial set (valued like data in C).
There is an equivalent notion of the nerve of objects A in C in Cat, which is defined
identically for ∆c : ∆ → C and HomC(∆c[n], A), but this is less useful for our purposes.

Setting nerves aside for a moment, we ought to define a Kan complex if we wish
to discuss how particular nerves provide a definition of an ∞-category. And, before
that, we ought to define horns and fillers. The horn of a simplicial set can be ideated
as a piece of the boundary of a cell. Let 0 ≤ k ≤ n, a natural number in [n]. If ∆[n]
is the standard simplicial n-simplex in sSet representing some [n], there exists a sub-
simplicial set Λk[n] ↪→ ∆[n] defined by taking every face in the boundary ∂∆n with
the exception of the one opposite the k-th vertex. This is properly referred to as the



6 DALTON A R SAKTHIVADIVEL

(n, k)-horn. If k is zero or n, this is called an outer horn; else, an inner horn. A horn
filler is a morphism of simplicial sets that has the right lifting property against horn
inclusions. All this means is, given two simplicial sets X and Y with f : X → Y , and
an (n, k)-horn, there exists a unique morphism x such that the following diagramme
commutes:

Λk[n] X

∆[n] Y

s

ιk f
x

y

If x exists and is unique, then f is said to be right orthogonal to the inclusion ιk.
These sorts of properties are of interest in category theory, as they allow particularly
nice factorisations of the system. Moreover, if we take a set of morphisms C ⊂ Mor(C)
in some category C, then the set of all morphisms left orthogonal to every morphism
in C is denoted by C⊥ (dually for right orthogonals, ⊥C). These sets contain only
isomorphisms.

Fibrations are morphisms with particular factorisation qualities, usually related
to homotopy equivalences. As such, orthogonal morphisms are types of fibrations,
so the model structure on a category is determined by the lifting properties of its
data.5 For instance, weak equivalences are precisely these fibrations that we are able
to treat as isomorphisms. This means that the way we can fill each simplex in X
determines the model structure on X; in general, model structures encode precisely
these lifting properties. A Quillen model structure arises from a Kan complex, which
is a simplicial set with the Kan condition—the property that every horn has a filler
which is a Kan fibration.6 Intuitively, this translates to the condition that if a horn
exists, we can reconstruct the simplex it came from, by extending the inclusion to
Λk[n] ↪→ ∆n → X. Since f ◦ s now factors through y ◦ ιk, the existence of x simply
asks that there is a simplex in X that contains the horn, given by s. The map taking
the horn to X assumes there is a simplex in X containing the image of the horn as
n connected (n − 1)-simplices. In other words, it is function mapping the (n − 1)-
simplices in the horn to (n− 1)-simplices in X[n− 1]. To find the lift x such that the
diagramme commutes means we wish to find a higher simplex x in X[n] such that
the set of face maps of x excluding dk contains all of the faces of the horn. A Kan
complex allows us to do this by first completing the horn and then ‘finding it’ in X.

5Conversely, anything that is nice enough to have some sort of model structure at some abstract
level (i.e. can be realised as a simplicial set) has fibrations. Indeed, homotopy lift and Kan conditions
are equivalent through the eyes of model categories, which is what enables simplicial homotopy theory.
We’ll see why this is of particular interest when we discuss fibrations as the ‘quantities’ in the duality
between space and quantity, and how the structure of simplicial sets allows us to understand the
role of fibrations in describing objects by classifying spaces. The generality here leads to Quillen’s
homotopy hypothesis, and in some sense, to the idea that homotopy theory actually happens in an
ambient (∞, 1)-topos.

6A Kan fibration is a particular right orthogonal morphism, taken to be f : X → pt, where pt is
the terminal simplicial set. In effect, this allows us to ignore the lower triangle of the diagramme.
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This can be proven simply by chasing the diagramme—factorisation aside, the crucial
property is that the maps go to the same simplicial set, albeit at different levels. For
proofs that construct such an x, see Section 08NT (numbered 14.31), Kan fibrations,
in the Stacks project. In any case, this brings us back to nerves—clearly, nerves are
important, because by singularising a category, we can place a model structure on it
and extract some homotopy coherent information.

One other interesting fact, recapitulating a motif throughout this section: the
realisation of a Kan fibration is a Serre fibration. It certainly resembles one when
the extension is a homotopy lift property. This is nice, because the singularisation
of a topological fibration—already a very general object—leads us directly to model
structures. Conversely, this fact follows from the Quillen equivalence of the model
structures on Top and sSet. A similarly inspired statement is that a Kan fibration is
acyclic precisely if the fibre over each vertex x, f−1(y) = x, is contractible.

3.1. Classifying spaces. The classifying space of an object is a space constructed
for the purpose of probing that object by quantities, i.e, a space such that maps
M → BD record data of D over M , for some generic object M and object of objects
D. When M is some category and we want to record categorical data over M , we
have the Grothendieck construction inducing a functor M → BD by

Mop → Cat

such that Cat is the classifying space of categories. This is very similar to other ideas
like stacks and moduli spaces, but only if we can represent an object of BD inside
M do we have a moduli space. Likewise, fibre bundles, which parameterise copies of
a manifold by points in a base manifold, possess classifying spaces when we consider
equivalence classes of bundles with similar fibres.

By probing an object with object-valued quantities, it follows that classifying spaces
should be related to simplicial objects in some sense. Indeed, this is (in the author’s
opinion) the most interesting thing which can be formalised by ∞-category theory.
Any discrete group (G, ·) can be categorified by taking it as a groupoid BG—a cat-
egory with one element, and with morphisms being automorphisms of the object given
by actions of g ∈ G. Since every morphism in a group is composable with any other
morphism, n-simplices in Nerv(BG) are just n-tuples G × . . . × G, such that the
nerve of BG is a particular simplical set. We have the following fact given by Land:
|BG| ∼= BG, such that the classifying space is the space made of the groupoid that
deloops G.7 The converse can be defined adjointly, relying somewhat on the techno-
logy of ∞-categories: the singularisation of BG is the nerve of BG, and indeed, BG
is a Kan complex.8

Thus, an example of how we think of nerves is found in a classifying space, in
that Nerv(C) exhibits a classifying space BC as its realisation. A nice instance

7For an example of this, see: https://ncatlab.org/nlab/show/geometric+realization+of+

simplicial+topological+spaces#ClassifyingSpaces.
8There is a different way to approach defining BG, which defines a cosimplicial object in the

category of groups. Clearly, singular complexes are to set Set as nerves are to Cat as simplicial groups
are to Grp. Due to the particularly nice structure of groups, simplicial groups are automatically ∞-
groupoids. This provides an instance of ∞-groupoids being equivalent to (classifying) spaces.

https://ncatlab.org/nlab/show/geometric+realization+of+simplicial+topological+spaces#ClassifyingSpaces
https://ncatlab.org/nlab/show/geometric+realization+of+simplicial+topological+spaces#ClassifyingSpaces
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of this is the above relationship between groupoids and classifying spaces. In line
with that, we have the fact that the model structure on Top is the presentation of
the (∞, 1)-category of ∞-groupoids as Kan complexes. This is, loosely, where the
ubiquity of Serre fibrations comes from—the geometric realisation of Kan fibrations
defined by relevant members of this category. This is the aforementioned homotopy
hypothesis, that ∞-groupoids localise spaces simplicially (in particular, that every
∞-groupoid is the fundamental ∞-groupoid of some space). Moreover, when BG is
the singularisation of BG, it is a particularly special groupoid called the delooping
groupoid. A delooping is defined such that an object of interest is the loop space
object of the delooping, encoding some important homotopy information about it.9

Indeed, deloopings occur in an ∞-category with homotopy pullbacks.
Philosophically, the theory of ∞-categories is useful in that it is the language that

formalises a number of things. A particular example is the ubiquity of fibration-type
objects, which arise whenever there is a model structure hiding somewhere. Then we
can understand how spaces and fibrations interact using ideas modelled on simplicial
sets, especially homotopy theory and classifying spaces.

3.2. Regarding ∞-categories. A model structure on a simplicial set defines an ∞-
category. This idea is present throughout Lurie’s work, where he uses Kan complexes
as a geometric model for ∞-groupoids (and homotopy types). Indeed, Groth states
an ∞-category is nothing but a simplicial set that satisfies certain horn extension
properties—these are clearly the lifting requirements we discussed previously. In
particular, an ∞-category is a simplicial set for which every inner horn inclusion
extends, with inclusions for all n > 1 extending ‘uniquely.’

Why does the reconstruction provided by Kan extensions matter? The intuitive
property of ‘knowing’ higher morphisms which the Kan condition provides is essential
here. Consider that horns are, in a categorical context, composable morphisms. If a
horn can be filled, then it can be completed to a commuting triangle (commuting up
to a higher morphism). This provides a composition of composable morphisms. If a
Kan complex has many such fillers—if many simplices can be constructed out of the
same horn, so to speak—then the composition is non-unique. Thus, any simplicial
set which is weakly a Kan complex is an ∞-category. Non-uniqueness in this context
may seem a surprise, but it follows from what we might want an ∞-category to
do. Uniqueness of composition at n in the Kan complex would simply lead back to
an n-category, because the unique composition of n-morphisms ‘collapses’ the set of
admissible (n+1)-morphisms between shared sources and targets—for instance, every

morphism filling the triangle 0
j1−→ 1

j2−→ 2 is merely the identity on j2 ◦j1. Instead, by
relaxing this condition, we can have several distinct two-isomorphic fillers, allowing
us to ‘parameterise’ the composition of lower morphisms by higher morphisms. This

9In a generalised cohomology theory, the n-th degree cohomology of X is the set of homotopy
classes between X and some object E(n) such that the space of based loops in E(n) is E(n − 1).
The set of spaces E(n) represents hn(X). Thus, a loop space is a kind of homotopy coherent abelian
group. A loop space object also satisfies particular lifting properties, which is nice, and relates to its
capturing of homotopical data. See https://math.ucr.edu/home/baez/calgary/BG.html for a brief
overview.

https://math.ucr.edu/home/baez/calgary/BG.html


SOME VOCABULARY AND MOTIVATION FOR ∞-CATEGORY THEORY 9

is what leads to an (∞, 1)-category, which is what Land and Lurie refer to as an ∞-
category (an ∞-groupoid has no non-invertible10 morphisms and hence is equivalently
an (∞, 0)-category). This is to say, we can view an ∞-category as a weaker notion
of a category, with morphisms composing non-uniquely, and an infinite number of
morphisms between morphisms to relate composition at one level to the set of higher
morphisms. This is what Joyal called a quasi-category (for the obvious reason that
it is almost a category), and has also been called a weak Kan complex (for the even
more obvious reason that it is a weakening of a usual Kan complex).

On that note, a word of warning is in order: an ∞-category is distinct from the
perhaps more familiar notion of a strict higher category, since it is not enriched in
lower categories. Rather, it is enriched in simplicial sets, and an (∞, r)-category for
r = n is a weakening of the structure of a strict n-category to an n-category up
to higher (coherent) homotopy. That said, any (n, r)-category is like a more rigid
(∞,∞)-category, where for all i > n, all pairs of i-morphisms with shared source
and target are made edge equivalences; likewise for i-morphisms with i > r. This is
referred to as n-truncation, and in fact, a portion of what is unproven in the homotopy
hypothesis is that it ought to be preserved under n-truncation—n-types ought to
coincide with n-groupoids. In the other direction, if we relax not only uniqueness of
composition but also its associativity, we have a theory of A∞-categories via operads.
In this specific sense, the motivation for ∞-category theory is not truly expanding to
higher morphisms, but expanding the number of existing morphisms at each i ≤ n.

Stating the above two paragraphs a slightly different way, vertical categorification
is (loosely) adding morphisms between morphisms to create higher categories out of
categories out of sets, and horizontal categorification is (loosely) adding objects at
the ends of morphisms to create categories out of monoids out of objects. What we
have in passing from n-categories to (∞, n)-categories is, then, a kind of ‘diagonal’
idea. It weakens some existing structure in an n-category to get meta-morphisms
between existing (n+1)-isomorphic n-morphisms. Consider the diagramme at the end
of nLab’s nerve of a category page, found here: https://ncatlab.org/nlab/show/
nerve#NerveOfACategory after a bit of scrolling. In the example of three-morphisms,
there is a pair of two two-morphisms, f2(f1) and f3(f2), which are equivalent (they
lead to two equivalent higher morphisms, f3(f2(f1)) and (f3(f2))(f1), as fillers) but
not identical (by weakening). Relating these lower morphisms by their shared higher
morphism is the job of a cell, which keeps track of the weakening we’ve asked for.
Note the singular use of higher morphism in the previous sentence: this indicates
they are identified together via their own equivalent higher morphisms, and so on, ad
infinitum. This is what we mean by relating a set of non-unique lower morphisms to
an organising higher morphism.

The entire motivation for ∞-category theory is to have some technology that plays
about with the concept of equivalence. The thing we mentioned, higher isomorphism

10Recall that an (n, r)-category has n ‘meaningful’ types of morphism (anything higher is trivial)
and n−r distinct reversible (undirected) morphisms, with anything greater than r trivially reversible.
This is correspondingly called an r-directed homotopy n-type. Under the homotopy hypothesis, a
homotopy n-type can be regarded as a space for n = ∞, and so ∞-categories generalise ∞-groupoids
to ‘directed spaces’ where paths are not invertible.

https://ncatlab.org/nlab/show/nerve#NerveOfACategory
https://ncatlab.org/nlab/show/nerve#NerveOfACategory
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but non-identity, is this key idea. It generalises a thing referred to as coherence. A
compositor is a two-cell, composing one-morphisms into a two-morphism; an associ-
ator is a three-cell, sending three-morphisms to three-morphisms by associating the
composition of three one-morphisms using the intermediate two-morphisms they can
produce; the law for associators is the four-cell called the pentagonator. Each is a
coherence law for the morphisms directly below it—a homotopy witnessing compos-
itional equality, telling us what is the same as what. The higher coherences of a
strict n-category hold not just up to coherent isomorphism, but are actual equalities.
Indeed, replacing coherent isomorphisms by equalities is the process of strictifica-
tion (also called rectification, sometimes). Conversely, the existence of such ‘meta-
morphisms’ is saying that any n-coherence law, and hence the cell arising from the
filler of any horn of (n−1)-morphisms, becomes one of many n-morphisms witnessing
the non-identity of (n− 1)-morphisms under horizontal composition.

This is illustrated by the following diagrammes, relying on the fact that composition
of n-morphisms is only equivalent to another n-morphism in the sense that there exists
a homotopy taking one to the other:

B

A C

g
α

f

h

and

B

A C

g
α

f

g◦f

What is n then, if all the infinity cells we have are meant to be coherent? Shouldn’t
everything be an (∞,∞)-category automatically? In fact, n encodes the directedness
of morphisms: in an (∞, n)-category, all i-morphisms, i ≤ n, are directed—the edges
in cells cannot be näıvely inverted—whilst all j-morphisms, j > n, are just edges,
and have no direction to them; hence, they are in fact equivalences. This directedness
number is the r of a normal (n, r)-category. If that seems odd, remember, this is not
vertical categorification. In a sense we’ve already taken n to infinity by assuming these
higher relationships exist, so, this data gets pushed ‘diagonally’ into r. Crucially, from
the homotopy perspective, these two notions of r end up in fact being the same—see
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Remark 2.2 here: https://www.matem.unam.mx/~omar/papers/infinity-survey.
pdf. Likewise, placing scare quotes around ‘uniquely’ in this subsection’s first defin-
ition means that there are non-unique composites, but that the space of composites
above n is contractible—the composites are the same thing, homotopically speaking.
It is simply asking that a higher cell is orientable in any direction, such that the
homotopies on the constituent compositions can be regarded as the same.

Correspondingly, we can vertically categorify an (∞, n)-category to an (∞, n +
1)-category, via enrichment in lower ∞-categories. One could argue a sort of r-
truncation exists, sending (∞, n)-categories to weak n-categories by enforcing (n +
1)-coherence—that (n + 1)-morphisms obey some strong coherence law, such that
they are not just homotopically equivalent but identical under composition. This
annihilates the residual higher cells we keep around pro forma in an (∞, n)-category.

There are a few other ways of constructing ∞-categorical objects, contingent on
some of the relationships recorded by simplicial sets. For example, under the homo-
topy hypothesis that spaces and ∞-groupoids should be isomorphic, given a space X
there is an ∞-groupoid π∞(X) where the points are objects, one-morphisms paths,
two-morphisms homotopies between paths, and so forth. Here, we don’t explicitly
need knowledge of Kan complexes—although of course, this is hidden in the groupoid
structure of π∞. The realisation of π∞(X) as a simplicial set is X. Likewise, by
the Segal condition, every nerve of a groupoid is a Kan complex, leading to an ∞-
groupoid. In fact, the theory of ∞-groupoids had been hinted at long before higher
category theorists looked at it, by topologists. Additionally, there are a handful of
models beside Kan complexes and quasi-categories that also lead to ∞-categories, as
well as completely model free approaches.

There is a lot more to mention about loop spaces, classifying spaces, cohomology
theory, strict and weak higher category theory, and the homotopical and topological
information encoded in ∞-categories, which I presume will be discussed sometime
quite soon. For an even higher-level overview of the motivation for∞-category theory,
as well as some of the history of the field, see a recent Quanta magazine article by
Kevin Hartnett (link is embedded). A particular quote in the article, originally from
John Francis at Northwestern, is appropriate here: “no one goes back once they’ve
learned infinity categories.”

Department of Mathematics, Stony Brook University, Stony Brook, NY, 11794-3651
Email address: dalton.sakthivadivel@stonybrook.edu

https://www.matem.unam.mx/~omar/papers/infinity-survey.pdf
https://www.matem.unam.mx/~omar/papers/infinity-survey.pdf
https://www.quantamagazine.org/with-category-theory-mathematics-escapes-from-equality-20191010/
https://www.quantamagazine.org/with-category-theory-mathematics-escapes-from-equality-20191010/
https://www.quantamagazine.org/with-category-theory-mathematics-escapes-from-equality-20191010/
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