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1. Introduction

This paper concerns a story from the history of set theory’s role in real analysis.
A controversy created by an unsolved problem in analysis, initially posed by Paul du
Bois-Reymond, drove many to develop a more robust theory of ordered sets in the late
1800s and early 1900s. Du Bois-Reymond introduced the idea of a boundary between
convergence and divergence based on the rate of growth of a function, which he sought
to derive from some total ordering on the growth of any number of functions as they
went to infinity. He evaluated growth rate in the sense of whether one sum attains
a larger infinity than another, and in so doing, claimed to have ordered the set of
all functions, including series as functions returning partial sums. His approach later
attracted some criticism, including that of Felix Hausdorff, who showed that some
functions are incomparable at infinity, and so the ordering that du Bois-Reymond
constructed could never truly exist. Hausdorff proceeded to use his prior work on
gaps in ordered sets to evaluate the structure of a slightly different ordering, and
showed a boundary could never exist in a countably infinite set. Later results show
that this cannot occur in general, not even in the uncountable case. The two primary
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references are [Plo05], J M Plotkin’s 2005 book Hausdorff on Ordered Sets, and [Fis81],
G Fisher’s 1981 article The Infinite and Infinitesimal Quantities of du Bois-Reymond
and their Reception. Translations are the author’s.

2. A question about convergence

Analysis, broadly characterised, is the study of functions; real analysis, then, is the
study of real-valued functions. Separate from this, an ordering or order relation is
an anti-symmetric binary relation modelled on < and >, perhaps first suggested in
Euclid’s fifth book, regarding magnitudes and ratios of magnitudes.

An interesting bit of historiography is suggested by the unidirectional nature of the
so-called ‘limit test’ for the convergence of a function f : N → R>0, found in analysis.1
Take an infinite series of the form

∞∑
n=0

f(n) = L .

We have the following observation: limn→∞ f(n) > 0 =⇒ L = ∞, or, if the function
defining the summand increases at all, the series certainly diverges. This is easy to
ideate, in that the Cauchy criterion for the bounding of partial sums will obviously be
violated if the elements being added to each sum themselves increase. There is also
the following counterexample to the converse of this observation: in the infinite limit
of f(n) = 1

n , we have zero, and yet, the harmonic series
∞∑
n=0

1

n

still diverges. This is since 1
n does not decrease fast enough for the sequence of

partial sums to remain bounded. This criteria, a boundary between divergence and
convergence based on a sufficient speed of decrease for the function to sum to a finite
number, is the formulation (in somewhat modern language) of a problem first posed
by Paul du Bois-Reymond, which took decades and a series of new results on ordered
sets to solve conclusively.

In an 1871 paper [dBR71] by du Bois-Reymond entitled « Sur la Grandeur Relative
des Infinis des Fonctions » [EN: On the Relative Size of the Infinities of Various
Functions], he defines an “algorithm” that orders any set of functions according to
how large their infinities are, a kind of ordering according to the speed with which
they grow. Taking two functions f and g, he denoted by the binary relation f ≻ g
that f should be regarded as larger than g if

lim
n→∞

f(n)

g(n)
= ∞,

indicating that f grows more quickly (attains a larger infinity) than g. Likewise, f ∼ g
if the above algorithm returns a finite, non-zero number, and g ≻ f if this algorithm

1Here we go against the Bourbaki convention for the natural numbers by excluding zero. On the
other hand, every sequence we take is strictly positive in the Bourbaki sense, in that it is not negative
and excludes zero.
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returns zero. Du Bois-Reymond refers to this ordering as his infinitary rank ordering,
and the ≻ relation as an infinitary inequality. There are some fatal problems with
this first iteration of the infinitary rank ordering, however—many of them related
in someway to the fact that this set is only partially orderable, as there are large
equivalence classes of functions with the same limiting behaviour. A specific problem
du Bois-Reymond acknowledges is that the limit is forgetful of any terms in a function
not contributing to the ‘largest’ infinity of that function: he uses the example of a
sequence of functions f ≻ f1 ≻ f2 . . . ≻ fN such that each fi has a ‘smaller infinity’
as its individual limiting behaviour. Clearly, the following two ratios,

lim
n→∞

f(n) + f1(n) + f2(n) + . . .+ fN (n)

g(n)

and
lim
n→∞

f(n)

g(n)
,

are equivalent for any finite N , since in the first ratio, the leading infinity is that of f ,
not the finite series of smaller infinities in the first one. As a result, f dominates in the
limit. This is at least one instance of multiple different functions occupying the same
point on du Bois-Reymond’s line, and indeed, there were other difficulties, though
many went unrecognised for a time after his publication. He suggests a way to patch
over the problem by also considering the difference between two functions, but does
not seem to elaborate much, beyond suggesting that beside some technical difficulties
that can easily be resolved, a well-defined criteria for ordering a set of functions by
the size they attain surely exists and can be implemented.

In a paper [dBR77] following that one, „Über die Paradoxen des Infinitärcalcül”
[EN: Regarding Some Paradoxes in the Calculus of Infinitary Quantities], we see the
first mention of the boundary between convergence and divergence, as encoded in the
infinitary rank ordering. This article seeks to investigate what he calls paradoxes,
which are features of his infinitary rank ordering that are not present in the usual
real line. He is first interested in what we would now call the density of his line,
and with its properties as a kind of continuum.2 Du Bois-Reymond recognised that,
in the continuum of the real numbers, there were particularly special rational and
natural numbers embedded amongst innumerable irrational ones. Richard Dedekind
had, shortly before, disseminated [Ded72], from which we conceptualise Dedekind
cuts—constructing any number as either a rational number (if the cut defines a se-
quence with smallest element in Q) or an irrational number filling that gap, which we
would now say is constructible as the limit of a sequence of rational numbers. Presum-
ably, du Bois-Reymond took inspiration from this, and asked similar questions about
the various curves in between two curves that increase at different rates. This idea
of cuts in the continuum may indeed have been what led him to seek the existence
of a boundary between curves that increase too quickly to converge and curves that
increase sufficiently slowly to converge. Du Bois-Reymond recognised what Hausdorff
would later formalise: due to the density of any set with large cardinality, such as

2Crucially, these concepts did not exist properly until the likes of Georg Cantor and Felix Hausdorff
formalised them, which we will discuss later.
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any continuum-type object, cuts which are ‘clean’ on both sides are not possible—any
such cut would be surrounded on one side by an infinite number of smaller and smaller
elements. Du Bois-Reymond admits that there is no sense in declaring a gap between
the two sides of a cut, because any gap could be filled by some other function which
tends to infinity alongside the function at the cut (again, one wonders if the thought
was, ‘just like Dedekind did to fill the rationals with irrationals’). Without regard
to his own insight, however, du Bois-Reymond persists in saying a boundary must
exist—if not by these means, then by some other. In particular, he conjectures that
if it is not a function he could write down and put on his line, then perhaps it is some
analogue to the irrational numbers embedded amongst the more elementary functions
he was concerned with. He suggests that, in analogy to admitting irrational quant-
ities in R, in the infinitary domain there could be kinds of growth which cannot be
expressed by the analytic operations he used.

This point is the first building block in what Hausdorff would later formalise about
the infinitary rank ordering. Crucially, du Bois-Reymond recognises that there can be
no simple object satisfying the property he seeks; but, he also has not yet dismissed
the question, suggesting a more complicated positive answer ought to exist.

3. Objections to and affirmations of the infinitary rank ordering

Cantor was a serious critic of du Bois-Reymond’s ideas. He saw the work spelt
out above as seriously lacking—imaginative, perhaps, but uninsightful and dreadfully
informal. More directly, several mathematicians objected to du Bois-Reymond’s in-
finitary inequalities, as well as the construction of the infinitary rank ordering based
on these inequalities. Dedekind sided immediately with Cantor as regards du Bois-
Reymond’s loose description of infinitely large and infinitely small numbers. Felix
Klein seemed to agree with the two of them, even writing that allowing such a con-
struction to take hold in mathematics would be irresponsible. Perhaps it is no coin-
cidence that today, Cantor is famous for having gone on to develop the first formal
ideas surrounding infinite set theory, as a direct precursor to the Zermelo–Fraenkel
axioms. It is curious, then, that Abraham Fraenkel was somewhat supportive of du
Bois-Reymond’s ideas in the ensuing controversy over whether his work possessed any
philosophical merit, as was Bertrand Russell. It is no exaggeration to say du Bois-
Reymond’s work had captured much of the mathematical world of the late 1800s.

An important counterexample to the well-definiteness of the infinitary inequalities
is due to Cantor, who established circumstances under which two functions cannot be
compared. Take, for instance, any function for whom the limit of the quotient of that
function by some other function does not exist. Cantor was also displeased with the
infinitary rank ordering, as it violated the Archimedean axiom of the usual reals. It
was Otto Stolz who, in 1883, proved that any system with infinitely small quantities
was incompatible with the Archimedean axiom [Sto83]. In particular, this includes
du Bois-Reymond’s system, where an infinitely small quantity is a function on the
inversion of his line. This was published as „Zur Geometrie der Alten, Insbesondere
über ein Axiom des Archimede” [EN: On the Geometry of Antiquity, Especially as
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Regards an Axiom of Archimedes]. However, in 1885, Stolz proposed a lengthy re-
axiomatisation of infinitesimal quantities, which avoided this issue by focussing on
limits rather than the explicitly infinitely small. Just as it seemed new doors were
opening for his ideas, Paul du Bois-Reymond died, four years later in 1889. The
set-theoretic side of the issue appears to have gone dormant at this time.

The story does continue on the analytic side with Alfred Pringsheim, who became
involved in search of this boundary. It is Pringsheim’s 1890 paper [Pri90], „Allge-
meine Theorie der Divergenz und Convergenz von Reihen mit Positiven Gliedern”
[EN: A More General Theory of Divergence and Convergence of Sequences with Pos-
itive Terms] wherein appears the first proof that the limit test is necessary, but not
sufficient, for convergence. Pringsheim publishes a series of papers after this, ar-
guing against the idea that a boundary exists, and suggesting that at the very least,
du Bois-Reymond’s infinitary rank ordering has nothing technical to say about the
problem.

Du Bois-Reymond had his own supporters in terms of the idea of organising func-
tions by growth. In [Bor98], his 1898 « Leçons sur la Théorie des Fonctions » [EN:
Lectures on the Theory of Functions], Émile Borel took an interest in the problem,
revising du Bois-Reymond’s approach with more technical details. He first takes only
those functions in that are comparable, and then asks if there is a system analogous
to the theory of measures on this set. Let a denumerable set be a set in bijection with
the infinite set of integers, and let φk(x) be the k-fold iteration of φ, i.e.,

(φ ◦ φ ◦ . . . ◦ φ)︸ ︷︷ ︸
k

(x).

For a concrete example, consider the exponential function and φ2 = exp{exp{x}}.
Borel used du Bois-Reymond’s construction to prove that, for any increasing, denu-
merable sequence of functions φk, there is always a function φω with a ‘larger infinity’
than any sequence φk for any k. In direct analogy with defining the transfinite ordinal
numbers, we can now take the iteration φkω, and the iteration of the function φω2

surpassing that sequence, φkω2 , and so forth. Borel called this transfinite iteration,
and argued it had a proper place in any inductive scenario exceeding the small car-
dinals of ZFC set theory. Having more formally established the idea of transfinitely
large infinite numbers, Borel was regarded as having redeemed du Bois-Reymond’s
idea of larger and smaller infinities. Today, we have exactly this situation in formal
approaches to ∞-category theory, whose models require the existence of large, inac-
cessible cardinals,3 and a semi-formal calculus of infinite numbers with varying sizes.
This idea is itself built out of the von Neumann universe of sets, which requires
transfinite procedures to construct.

It is interesting, then, that Borel was led to the same question as du Bois-Reymond,
suddenly becoming interested in the boundary between convergence and divergence
in an 1899 memoir. He did not complete his work on this idea until [Bor10], the 1910
« Leçons sur la Théorie de la Croissance » [EN: Lectures on the Theory of Growth],
wherein he presented some detailed results on ‘order types.’ Hardy also worked on

3This is loosely used to specify when a category is not locally small or small, and exactly how
non-small it is.
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the idea around 1910. Both made progress towards resolving the problem, but never
could a concrete solution be given; it is known that Borel continued to speak about
this problem as late as 1946, and it appears that Hardy moved swiftly on from his
contributions, to tackle other problems.

4. Hausdorff and a more robust theory of ordered sets

In 1906, with Borel having steered the issue partially back towards set-theoretic
foundations, Felix Hausdorff became interested in this problem.

Hausdorff had been interested in the set-theoretic structure of ordered continua
independently of this problem, as since Hilbert’s address at the Second International
Congress of Mathematicians in 1900, he had been interested in proving Cantor’s con-
tinuum hypothesis about the possible cardinalities of infinity between the reals and
the naturals (Hilbert’s first problem). Du Bois-Reymond’s work, having incidentally
defined a prototype of a pantachie, had likely been of interest to Hausdorff for this
reason.4 As a result, it is somewhat misleading to say Hausdorff took an interest in
the problem; rather, through his independent interest in ordered sets, he (much like
both du Bois-Reymond and Borel) eventually became captured by the problem.

From 1901 to 1904, Hausdorff does quite a lot of foundational work on ordered
sets, defining their properties in various ways. In [Hau06] and [Hau07], respectively,
he publishes two particularly interesting papers for us—these are „Untersuchungen
über Ornungstypen I, II, III” and „Untersuchungen über Ornungstypen IV, V” [EN:
Investigations into Order Types I, II, and III; Investigations into Order Types IV and
V]. As Hausdorff writes, this work was new at the time, in that it dealt with infinite
ordered sets in their totality, rather than merely “subsets of the linear continuum” or
the easily understood well-ordered set. Order types define some types of infinitely
large ordered sets, classified by various features akin to topological invariants or char-
acteristic classes. In this way, they classify totally ordered sets, in the same way that
cardinal numbers classify sets by their number of elements. An early conceptualisation
of order types was known prior to Hausdorff’s work, mostly due to Cantor’s work on
ordinal numbers. For example—the order type of the natural numbers, and thus any
totally ordered countable collection of sets by isomorphism with N, is the first ordinal
number, ω. Indeed, Hausdorff’s papers do not define order types, per se. Rather, he
constructs new ones and investigates their properties. A brief account of this work is
as follows.

4.1. Order type I. Hausdorff’s order type I, the order type µ(α) of powers of order
types, regards that of sets which can be formed from cardinal exponentiation.

If #A is the cardinal number measuring the size of the set A, then it is now known
that

#A#B = #Hom(B,A).

Hausdorff seeks to describe how the order type of the resulting set depends on the
order type of the base and exponent sets, in the most generality possible. To do so,

4This model for a pantachie being an everywhere-dense subset of a totally ordered set, mentioned
by du Bois-Reymond in later work on his infinitary rank ordering. Hausdorff was likely interested in
the idea of density as it related to the cardinality of continuum objects.
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he seems to introduce some concepts that would serve as precursors to his work in
topology—namely, the idea of a covering set. If µ and α are arbitrary order types
corresponding to sets M and A with respective cardinalities m and a, then the cardinal
exponentiation #M#A has the same order type as the covering of A by M , such that
subsets of M are indexed by elements of A. In other words, each element a ∈ A
is assigned a set Ma, of order type µa, such that we can take a particular element
xa ∈ Ma covering the element a, in the sense of occupying a point in a topological
space. The set of all such xa is the covering set of A by Ma, and the set of all x
(the cover of A by M) now has cardinality ma. He is then able to say various things
about the order type µ(α) corresponding to the cardinal exponentiation ma by looking
at the ordering of this covering set, such as whether µ(α) is finite, and if not, what
transfinite ordinal bounds it. Hausdorff asserts the cardinal derived from the covering
set is a much easier object to manipulate than the cardinal of the power set, and thus,
it is better to construct µ(α) from this.

4.2. Order type II. Order type II concerns the order type of subsets of ordered sets
with arbitrary order type µ. Whilst initially an unimpressive statement, we discover
that Hausdorff wishes to speak in complete generality about what sort of order types
we can expect to be contained in another order type.

Here, cofinality and coinitiality are defined. A subset B of A is said to be coinitial
if for every a ∈ A, there exists some b ∈ B such that b ≤ a. Likewise, a cofinal subset
is a set for which there exists a b ≥ a for every a ∈ A. The coinitiality and cofinality
of a set A is the number equivalent to the cardinality of the smallest cofinal subset
of A. For example, the cofinality of a partially ordered set with a greatest element is
one, as the set containing that greatest element is cofinal, and is the smallest cofinal
subset of that set. It follows that the cofinality of an ordinal number α is the least
cardinality of a cofinal subset of α. Since ordinals correspond to order types, we can
say the cofinality of an order type α is the least ordinal β which occurs as the order
type of some cofinal subset of α. Intuitively, this is the order type of the smallest fully
cofinal set. When we speak of ‘greatest elements’ in an ordinal sense, we must take
limits to treat the concept formally, so that the cofinality of some ordinal α is the
ordinal β such that there exists a β-indexed sequence with α as its limit. This can be
intuited as the length of the shortest possible sequence leading up to it from below. As
an example, take ω2, the order type of the countably infinite set of countably infinite
sets.5 Its cofinality is ω, since the limit of the ω-sequence of ω’s, ωn with n ranging
over all of N, is ω2. By definition of a limit ordinal, the cofinality of any countable
limit ordinal is ω. Another example is of the first uncountable ordinal (Hausdorff
denotes this Ω), the first ordinal number not in bijection with N. The cofinality of
Ω is itself Ω, by the same limiting argument—Ω is the collection of all countable
ordinals. Reversing the order of an order type is given by the ‘adjoint’ order type α∗,
such that the definitions for coinitial ordinals follow as limits from below of reversed
sequences. By defining cofinality, Hausdorff accomplishes what he sets out to do. In
analogy with ordinal numbers [n] = {1, . . . , n}, the cofinal element of an ordered set

5Think of a copy of N at every place in N, or the product N× N. The resulting pairs (i, j) range
across N in both arguments.
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is its order type. Hence, the order type of a subset of a set cannot possibly be larger
than the cofinality of its parent set.

In this way, he is able to say something about the kinds of subsets associated to a
set with a given order type, and in particular, he is able to say when a set is dense-
in-itself. A set which is dense-in-itself is a continuum: it contains no isolated points.
It seems a tautology to say that a set is only dense if it is ‘big enough’ (or contains
sufficiently many elements) for all of its subsets to also be dense; Hausdorff formalises
this by showing that only particular order types have a cofinal element large enough
to admit infinitely many subsets of infinite order type (e.g., particular ω-sequences),
such that there is no isolated element in the set.

He goes on to relate subset order types to the order type µ(α), offering a theorem
that if either the argument α is a limit ordinal or the base µ is a dense-in-itself type,
then µ(α) is a dense-in-itself type.

4.3. Order type III. In discussing order type III, the idea of “Dedekind continuity”
is also defined, where a set is of continuous type if any cut in the set produces at most
one bounded subset. In other words, for a set of order type µ, any decomposition is
given by µ = α∪β, where α and β are generic order types of the resulting subsets. If α
has a last element, or β a first one—but not both—then the set is of continuous type.
Now, if a set of type µ is coinitial with a set of type β∗ and cofinal with α, where α and
β are ordinals, it clearly means that every element of µ is a limit of an α-sequence and
a β∗-sequence. Hausdorff mentions the particular case where we have Ωω∗-elements.
These elements in general are of crucial importance to us, because coinitiality and
cofinality determine whether there is some limitingly smallest or largest element in an
infinite set—and so here, we have encountered a primordial Hausdorff gap.6

5. Order types IV and V, their gaps, and final behaviour

The first relevant result to us is Hausdorff’s exploitation of incomparability, in the
opening of the second half of the referenced 1907 paper. Like Borel (who encountered
this issue at one point in his work) and Cantor, Hausdorff noted there are pairs of
functions f and g that are infinitarily incomparable when the limit of their quotient
does not exist. He denoted such pairs by f ∥ g, alongside du Bois-Reymond’s f ≻ g
and f ∼ g. Incomparability is a crucial flaw in du Bois-Reymond’s infinitary rank
ordering, according to Hausdorff. He says, since it “has no analogy in the domain of
ordinary numbers,” that “the relation of the infinitary rank-order to the simple order
of quantities [on the real line] is completely destroyed.” As a result, “all attempts to
produce a simply (linearly) ordered set of elements in which infinite has its definite

6Such gaps were of crucial importance to Hausdorff as well. This was positioned as a way of
proving the continuum hypothesis—Hausdorff intended a proof along the lines of R contains an ΩΩ∗-
gap, and thus must be large enough to contain such a gap, and thus must be larger than Ω. With
the benefit of hindsight we know that the existence of such large cardinals is independent of ZFC,
and indeed, so is the continuum hypothesis. The approach Hausdorff desired to take shows strong
parallels to Cohen’s forcing, and had he the model-theoretic information available in the 1960’s, he
may just have been successful in generating the immense insight he wished to.
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place, must on these grounds fail: the infinitary pantachie in the sense of du Bois-
Reymond does not exist.”

Hausdorff carries on with a closely related variant of du Bois-Reymond’s pantachie,
intending to treat it with his own newfound insights into the structure of ordered sets.
Using the Hausdorff gap ωω∗, indicating the presence of a sequence or set of values
of type ω and a sequence of type ω∗ such that between these two sets there is no or
only finitely-many quantities—in other words, a clean or finitely unclean cut, on both
sides of the set containing each sequence as a subset—Hausdorff proved there was no
ωω∗-gap in his variant of the infinitary rank ordering. We will briefly describe the
construction his pantachie and the proof of its gapless-ness.

5.1. On pantachies. Under Hausdorff’s demonstration of incomparibility, the set
which du Bois-Reymond intended is at best partially ordered. Hausdorff takes what
we would now call a maximal chain in this partially ordered set; it is Hausdorff’s
maximal principle, an early version of which appears in this 1907 paper on order
types IV and V, that provides the existence of such a chain. Here, a pantachie is
formally defined as a totally linearly ordered set not contained in any other such set.
Again, this is precisely what we today call a maximal chain. Hausdorff also changes
the ordering from the quotient of two functions to the ‘final behaviour’ of the function.
This condition is rather like one function producing a greater cofinality than another.
Hausdorff formalises this as: a function f is finally greater than g if there is an f(n)
greater than all g(n). The author imagines an equivalent cofinality condition in the
following sense: let {xn}f denote the entire sequence of values xn = f(n), or the
function evaluated on all n ∈ N . We have f ≻ g if there exists an xn in {xn}f greater
than all of the elements of {xn}g. If that is the case, then the greatest such element
in {xn}f must be the cofinal element in {xn}f , since any xn satisfying this is either
the greatest element in {xn}f , or a lower bound for a greater also satisfactory element
in {xn}f . Thus, by definition of a cofinal element, the cofinality of {xn}f is strictly
greater than the cofinality of {xn}g. In addition to finally greater, the other relations
(finally less than, equal to, and incomparable to) follow as expected.

Hausdorff then defines his fifth order type: that of pantachies. He calls this the
H-type. This is itself informed by his investigations into order type IV, occurring
in the section preceding this one in [Hau07], which focusses on unbounded sets with
no initial or final element and everywhere density.7 It is at this point in [Hau07]
that he retrospectively describes a kind of maximal principle, formally proving the
existence of pantachies. He provides a proof that such a maximal set must exist,
even if it is trivially the original set, or else every ordered set would have greater
cardinality than the continuum by virtue of being contained in a still larger ordered
set. This is clearly a direct precursor to Hausdorff’s maximal principle, proven in
1914 using Zorn’s lemma. He then gives a series of results about H-types, especially
as they relate to features of the final rank ordering constructed earlier in the paper.
Ultimately, he provides the following characterisation: the H-type is everywhere dense

7Aside from its relevance to dealing with continuum type objects, this order type does not affect
our discussion much, as the key results in this paper relate the existence of certain gaps to the
cardinality of continuum objects, in pursuit of the continuum hypothesis.
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and unbounded, neither cofinal with ω nor coinitial with ω∗, and contains no ωω∗-
gaps. Intuitively, density is equivalent to being gapless, since any everywhere dense
set will have an infinite number of smaller quantities on one side of any cut defining a
supposed boundary. Take, for instance, the cut at 1 defining the set of real numbers
containing the natural numbers as embedded items. What is the largest number in the
set not containing any naturals? Is it 0.9999 . . . 9? How many nines are included in this
ideal boundary between the reals containing and not containing any natural numbers?
Without taking limits, this question is poorly defined: there is no such number. We
can always construct a slightly larger number which is still not big enough to be in
the set of real numbers containing a natural number. In R, we can take limits, so our
problem is solved. There is no sense in which this pantachie is complete, so we are
stuck. In a non-standard analytic setting where infintesimal quantities are formalised
through ultrafilters, there would be slightly more to say about this, but as it stands,
there is no gap. In fact, Hausdorff proves a stronger condition about mixture in
decompositions, as described.

At this point, using the definition of a pantachie and the derived properties of
H-types, he applies his new insights to the final rank ordering as a case study in
pantachies. In particular, he tidies up some results due to Pringsheim, who suggested
that a more slowly growing divergent series, or more quickly growing convergent se-
quence, can always be constructed. Using arguments about the cofinality of subsets,
and the unboundedness and density of H-types, he proves that

(1) if {Ui} is a countable set of convergent sequences8 ordered by their final beha-
viour, and P is an arbitrary sequence finally greater such that {Ui} ≺ P , there
always exists a convergent sequence X between them such that {Ui} ≺ X ≺ P ,

(2) if {Vi} is a similar set of divergent sequences, and A a finally greater sequence
{Vi} ≺ V , there is always a divergent sequence Y between them such that
A ≺ Y ≺ {Vi}, and,

(3) if every sequence in {Ui} is less than every sequence in {Vi}, then there are
infinitely many convergent sequences X and divergent sequences Y between
{Ui} and {Vi} such that {Ui} ≺ X,Y ≺ {Vi}.

The lattermost result is of particular interest, as it establishes that for any ‘gap’
we can always take a further ‘gap,’ ad infinitum. Statement 3 clearly follows from
Statements 1 and 2, so we look at those. To prove Statement 1, note the following:
we can construct a converging sequence {Ui} ≺ X for any set of sequences by general
facts of real analysis, at this point known due to Pringsheim. This means that, for a
countable set of convergent sequences, there exists a convergent ω-sequence9 X finally
greater than all in {Ui}. Now, iterating the construction of X, we construct a set P

8This ought to be isomorphic to the ordering of R-valued functions, given the canonical identi-
fication Ui = {xn}f 7→ f(n). Indeed, Hausdorff is implicitly using the fact that functions produce
sequences in some sense. Moreover, this applies just as easily to series, regarded as sequences of
partial sums Sn.

9Recall that an ω-sequence is a sequence of values xn indexed by all of N—hence, this is just the
result of a function f : N → R>0.
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finally greater than X, such that {Ui} ≺ X ≺ P . In fact, inducting on the process
reveals there are infinitely many such X’s. To prove Statement 2, we repeat the
process, changing directions of bounds as necessary.

This is certainly an indictment of du Bois-Reymond’s boundary—no gap can be
realised in Hausdorff’s countable set. Hausdorff states in a remark under this proof
that “in particular, between an ω-sequence of convergent elements and a following ω∗-
sequence of divergent elements there always exists further convergent and divergent
sequences; so that it seems totally wrong to want to fill in any such [postulated] ωω∗-
gap, in which by right there belong infinitely many real elements, by a single ‘ideal’
element.”

However, this is somehow unsatisfactory to him, as he returns to this issue in a
paper following his investigation into order types IV and V.

5.2. Final behaviour. In 1909, Hausdorff revisits the question in [Hau09], his paper
„Die Graduireung nach dem Endverlauf” [EN: Graduation by Final Behaviour], prov-
ing a slightly better result. Perhaps he was unsatisfied with the previous results he
had, which rely on having countable sets of sequences, whilst du Bois-Reymond had
already known that this was not where the answer to his question would lie—see, for
instance, his remark about an ‘irrational’ function.

After briefly reviewing the results he gave in his investigation into order type V,
Hausdorff establishes some results about gaps in the uncountable case. He comments
explicitly that this is dependent on the continuum hypothesis, as the existence of cer-
tain types of gaps in a pantachie ought to imply that a continuum object must have a
certain cardinality. He first develops a more complicated ordering, introducing inter-
mediate relationships based on how many elements of a sequence are finally greater
than all the elements of another. Let A = {Aα} be a transfinite set of sequences, and
A ≺ B. One intermediary possibility is that B non-uniformly surpasses the set A.
Recall a set B is finally greater than a set Aα if B contains at least one element that
is greater than every element in Aα, and that this can be expressed by

an < bn ∀n > να,

where να is a particular lower bound for how quickly B becomes finally greater than
Aα—i.e., the smaller να is, the faster B grows compared to Aα. We say B non-
uniformly surpasses A if (in Hausdorff’s words) “no infinite set of να remains below
a fixed number”—clearly, this is the condition that there is no upper bound on the
sequence {να}. As a simple example, consider that the set B = {1, 2, 3, 4} has ν1 = 1
for {1}, ν2 = 2 for {1, 2}, and ν3 = 3 for {1, 2, 3}. It is certainly true that

A = {{1}, {1, 2}, {1, 2, 3}} ≺ B,

since B is finally greater than every Aα ∈ A. Due to the variability in the ‘critical
numbers’ να, we would say that B non-uniformly surpasses A.

Hausdorff now does the following: he constructs two Ω-sequences of ω-sequences,
A and B, where each Aα is non-uniformly surpassed by some Bα, for whom there
is an ΩΩ∗-gap lying between, where no numerical sequence is realised. He then tries
to relate this to the final rank ordering, quoting du Bois-Reymond on the irrational
boundary found in a decomposition of an uncountable set. Indeed, he is able to prove
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that such a pantachie does not necessarily prohibit a gap—but evidently was unable
to construct one, as he leaves the problem open.

In some greater detail, Hausdorff is able to give the following result. Let Bc be
the Ω-sequence of all convergent numerical sequences, and Bd divergent. If X is any
interval of a pantachie consisting of real sequences, and X = X′ + X′′ is a cut of this
interval, then there is an interval B = Bc+Bd similar to X such that Bc and Bd are
similar to X′ and X′′, respectively. In particular, if X contains a gap, then so too could
B. The best he is able to actually construct is that Bc could have a final element,
finally greater than all others, interpreted in this sense as a fastest growing convergent
sequence; independently, Bd could have a first element. Hausdorff is evidently unable
to realise both simultaneously in the same pantachie. Again, he leaves open the
question of whether a patch exists, suggesting an ambient domain may realise both
simultaneously.

All things considered, it seems that, despite the controversy du Bois-Reymond
created, there is something like his infinitary rank ordering, given by Hausdorff using
his maximal principle, and this could exhibit something like a gap, also investigated
by him. Hausdorff comments explicitly that the construction of such a gap inside
an ambient domain would link a continuum with other results following from the
various order types, including cardinality, suggesting a solution to Cantor’s continuum
hypothesis. This is Hausdorff’s last remark on the matter, as he moved on to do what
would become foundational work in topology.10

6. Final reflections on du Bois-Reymond’s boundary

To the author’s knowledge, a conclusive proof of the non-existence of a single func-
tion constituting the boundary between convergence and divergence does not appear
in print until 44 years later. Walter Rudin describes in [Rud53], his 1953 book “Prin-
ciples of Mathematical Analysis” a proof that, given any divergent series, a more
slowly growing divergent series can be constructed; likewise, given any convergent
series, a more quickly growing convergent series can be constructed. He refers here
to [Kno22], Konrad Knopp’s 1922 book “Theory and Application of Infinite Series,”
where a diagonalisation-type argument due originally to Pringsheim is found. Many
years after this, in [Fol99], Gerald Folland proves in chapter five of his 1999 textbook
“Real Analysis: Modern Techniques and Their Applications” that there is no possible
worst convergent series. This proof is of particular interest to the author, so it is
described below.

Take two sequences, {an} and {cn}, perhaps the sequence of values given by eval-
uating a function at every natural number, like a(n) or c(n). Indeed, take individual
terms in the sequence as an and cn. Recall that a series

∑
an|cn| converges absolutely

if
∑

an converges absolutely and cn is bounded. Suppose there exists an an such that
if and only if cn is bounded,

∞∑
n=0

an|cn| < ∞.

10It was shortly after this that he defined the various notions of a Hausdorff space, with which
most everyone is familiar.
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That is to say, we claim there exists a single sufficiently slow rate of increase of the
partial sums of a series to guarantee the convergence of an, and thus of any an|cn|, and
then take the sequence with that rate for an and bound cn arbitrarily. Assume the
claim is true, and such a sequence exists. If B(N) is the space of bounded sequences
on N and ℓ1 is the space of functions with

∑∞
n=0 xn < ∞, then the claimed result

induces a map T : B(N) → ℓ1 given by an 7→ an|c(n)| for any c(n). Since T is both
injective and surjective, T restricts to a bijection. Moreover, by Hölder’s inequality,
the restriction is bounded, and so using the open mapping theorem, T−1 is bounded
too. However, there exist sets which are not dense in B(N) whilst being dense in ℓ1,
making such a bijection impossible. The counterexample given by Folland is the set
of functions for which c(n) = 0 for all but finitely many n, e.g., element-wise indicator
functions like the Kronecker delta {δkn}, returning zero for k ̸= n and one for k = n.
This contradiction disproves the claim.

So, finally, we are assured there can be no single worst convergent series. We
could consider this satisfactory, in that it implies there are infinitely-many boundary
functions, so that there is an infinitely large class of sequences giving this boundary.
Nonetheless, with this result, we seem to close the book on du Bois-Reymond’s final
hope of some unknown ‘irrational function’ providing the boundary he sought.

7. Conclusion

It is remarkable that a large part of the historical motivation for ordered set theory
is due to, essentially, a side-quest in the analysis of real-valued functions. It was surely
a difficult question—an interesting question that took many years and many minds to
solve—and this is often the most fertile ground for growing new mathematical ideas.

My own motivation for studying this question was along the same lines as many of
the characters in this story. As a boy I was fortunate enough to fashion for myself
a course in logic, set theory, and real analysis, mainly out of some books which
had caught my eye in a local library.11 At the time, the existence of this boundary
seemed like a natural question to ask. I went on to formulate my own proof—in
fact, my first proof, ever—of its non-existence. The proof I gave was implied by
Hausdorff’s restatement of Pringhseim’s results, but I didn’t realise whilst writing it.
Accordingly, imagine my surprise when I then consulted the literature and learned
that there was a wealth of discussion about it already, and that some truly great
mathematicians had been ensnared by the very same question. To write my own
proof, I had unintentionally gone through the same set of steps as they all had—notice
some functions decrease ‘too slowly’ for their infinite series to converge, ask what ‘too
slowly’ could possibly mean, use set theory to try and order everything by growth
rate, and find that this is impossible to formalise. Moreover, this experience was my
first real exposure to research mathematics. Although it is seemingly unknown to the
rest of the world, it has become a story of great personal importance for this reason.

With the benefit of hindsight, we now know how much we all owe to this controversy
in the history of modern mathematics. In particular, the work by Hausdorff that was

11A favourite was an old copy of [Kam50], for instance.
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partially inspired by this problem went to the very heart of set theory, and du Bois-
Reymond’s misadventures with infinities sharpened our ideas of sets, real analysis,
and even the more philosophical side of logic and mathematics. Perhaps it would not
be hyperbole to say that his curiosity, and the work it inspired, has led us directly to
modern mathematics.
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